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Transverse spin forces and non-equilibrium
particle dynamics in a circularly polarized
vacuum optical trap
V. Svak1, O. Brzobohatý1, M. Šiler1, P. Jákl1, J. Kaňka1, P. Zemánek1 & S.H. Simpson1

We provide a vivid demonstration of the mechanical effect of transverse spin momentum in

an optical beam in free space. This component of the Poynting momentum was previously

thought to be virtual, and unmeasurable. Here, its effect is revealed in the inertial motion of

a probe particle in a circularly polarized Gaussian trap, in vacuum. Transverse spin forces

combine with thermal fluctuations to induce a striking range of non-equilibrium phenomena.

With increasing beam power we observe (i) growing departures from energy equipartition,

(ii) the formation of coherent, thermally excited orbits and, ultimately, (iii) the ejection

of the particle from the trap. As well as corroborating existing measurements of spin

momentum, our results reveal its dynamic effect. We show how the under-damped motion

of probe particles in structured light fields can expose the nature and morphology of

optical momentum flows, and provide a testbed for elementary non-equilibrium statistical

mechanics.
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A lthough its existence has been recognized since the time
of Kepler, the momentum of light remains a subject of
intense debate. Uncertainty over its value when propa-

gating through continuous media continues to excite interest1.
Even in free space the topic is not without controversy. For
example, the time averaged Poynting momentum in free space
can be separated into two parts2–4 whose differing properties have
yet to be fully understood:

p ¼ 1
2c2

< E� ´Hð Þ ¼ ε0
2ω

= E� � ð∇ÞE½ � þ ε0
4ω

∇ ´= E� ´E½ � � pO þ pS;

ð1Þ

(in SI units, with c the speed of light, and ε0 the permittivity, in
vacuum). The first of these contributions, pO, is independent of
polarization, and referred to as the orbital component. The sec-
ond term, pS, is related to inhomogeneous circular polarization,
and referred to as the spin component. Alternative decomposi-
tions of the momentum are discussed in Supplementary Note 1.
Eq. (1) is the most appropriate as the different components, pS

and pO, couple to dielectric matter in qualitatively different ways
for dielectric objects of small or intermediate size5–7.

Interest in these distinct contributions is rooted in field theory,
as has been extensively discussed elsewhere6,8,9. In summary,
the field theoretic basis of the Poynting momentum rests on
Belifante's symmetrization of the canonical stress energy tensor,
derived by applying Noether's theorem to the electromagnetic
Lagrangian10,11. This modification ensures conservation of
angular momentum, removes the gauge dependence of physical
quantities, and resolves various other inconsistencies10,11. In this
context, pO can be identified as the canonical momentum derived

from the Noether theorem, evaluated in the Coulomb gauge. This
term gives the optical scattering force on a point particle (Sup-
plementary Note 2). The spin part of the Poynting vector, pS,
appears as a consequence of symmetrization and was thought to
be virtual, as it does not contribute to the overall momentum of
the field

R
1pSdV ¼ 0

� �
. The physical origin of pS can be con-

ceptually understood in terms of spin momentum loops6. In
infinite, homogeneous fields, contributions from neighboring
loops cancel. Spatial inhomogeneities, including intensity gra-
dients, break this balance, generating a non-zero boundary spin
current, pS ≠ 06. Figure 1b illustrates this mechanism for circu-
larly polarized beams, as used in this work.

The question of how and, indeed, if pS couples to matter
presents itself. Addressing this issue is experimentally challen-
ging. Spin momentum (pS) requires field inhomogeneities
which, by necessity, generate other forms of optical force,
including gradient forces. To measure its effect, delicate spin
forces must be reliably distinguished from other stronger forces.
This was elegantly achieved in a recent experiment, in which
the deflection of a nano-cantilever, immersed in a circularly
polarized evanescent field was measured5. In this case, the
spin dependence of the force is isolated, from the prevailing
effects of orbital momentum, by varying the degree of circular
polarization, applying a symmetry argument and by observing
that, in an evanescent wave, spin and orbital components of
momentum are orthogonal6. Other experiments require minute
analysis of the motion of particles in liquid, subject to appro-
priate light fields12,13. Related or analogous effects rely on
substrate interactions or optical chirality or birefringence14–17

and, whereas fascinating in their own right, do not depend
explicitly on incident spin momentum.
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Fig. 1 Physical principles of the experiment. a Schematic showing the electric fields in the counter-propagating circularly polarized beams of opposing
handedness (green and red) and the rotation of the combined electric field (blue). b Local optical spin (S=ℑ(E* × E)) field in the transverse xy plane of
the beam. Radial gradient optical force Foptr and azimuthal non-conservative spin force, Foptϕ acting upon a particle positioned off-axis. Regime I corresponds
to the particle position in the vicinity of the beam axis for lower laser power, whereas regime II corresponds to the above threshold condition, in which
the particle orbits the beam axis. c Snapshots of orbiting particle (regime II) taken by the CCD camera oriented perpendicularly to the beam propagation.
d Trajectories of the particle for both regimes I and II acquired by a QPD. Turquoise curves denote trajectories for a lower trapping power of 55 mW
with particle motion near the beam axis; pink trajectories show an orbiting particle for an above threshold power of 180mW
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We note that mechanical tests of spin momentum generally
require a minor caveat. There is no unique definition of pS and, in
the Mie regime, there is no formal way to associate transverse
spin forces with pS. Nevertheless, when a high-symmetry object,
such as a sphere, experiences a force in a particular direction,
there must be an underlying source of momentum. These matters
are discussed further in Supplementaty Note 1.

In this work, we consider the motion of a probe microsphere in
an almost paraxial, circularly polarized Gaussian vacuum trap.
Pronounced departures from equilibrium behavior are observed
that demonstrate the presence of transverse spin forces deriving
from corresponding components of optical momentum.

Results
Physical principles and overview of the experiment. In our
experiments, spin forces manifest themselves directly, through the
inertial motion of a microsphere in a vacuum optical trap, in free
space. Such traps are used in the pursuit of ground state cooling
of macroscopic objects18–20, for studying aspects of nano-scale
dynamics21,22 and statistical mechanics23–25. By comparison with
the relatively subtle effects previously observed, our results are
striking and unequivocal. Ultimately, we observe the violent
ejection of a probe particle from an optical trap, as a direct
consequence of transverse optical spin momentum. The experi-
ment itself is elegant in its simplicity. We track the motion of a
small, dielectric probe particle in a counter-propagating Gaussian
beam trap, in vacuum (see Fig. 1a, b). The beams are weakly
focused with a numerical aperture of NA ≈ 0.18 (equivalent to a
Rayleigh range of kzR ≈ 150, for wave-vector k). This symmetric
geometry nullifies the axial scattering forces associated with each
beam26 and emphasizes transverse spin components, when they
are present. The polarization state of the beams can be inde-
pendently adjusted using quarter-wave plates on either side of the
trap (see Methods). When the beams have parallel, linear polar-
ization (LP), the only surviving forces in the trap are optical
gradient forces. These forces attract the particle toward the beam
axis, and provide a periodically modulated force, in the axial
direction, that is associated with the interference fringes of the
standing wave (see Supplementary Note 2). As gradient forces
are conservative, thermal equilibrium is maintained within the
trap and the thermal motion of the particle complies with
the equipartition of energy, so that elastic energy of the trap is
equal to the thermal energy. In particular, the optical restoring
force, Fi, is linearly proportional to displacement, xi, to first order,
e.g., Fi=−Kixi, where Ki is the trap stiffness in direction i. Ki

is directly proportional to the optical power, Ki= Pki. Equating
thermal and elastic energies gives 1

2 kBT ¼ 1
2Kihx2i i, so that the

greater the power in the trap, the more tightly the particle is
constrained, i.e., hx2i i / 1=P.

When the quarter-wave plates are adjusted so that the beams
are circularly polarized with opposite handedness (CP) the
electric field vectors of the beams rotate together, in the same
sense, Fig. 1a. This has two effects. First, the weak focusing by the
lens produces small, transverse components of pO through spin-
orbit coupling27. Second, the inhomogeneous circular polariza-
tion generates transverse components of pS, which also circulate
about the beam axis, Fig. 1b. For the quasi-paraxial beams used
here, the various momentum decompositions are approximately
equivalent, and the spin term is strongly dominant, with
jpSϕ=pOϕ j≳ð2kzRÞ � 300 (Supplementary Note 1). These transverse
momenta give rise to azimuthal forces, primarily associated with
pS (Supplementary Note 2). In combination with the optical
gradient forces, the circularly polarized trap has a cylindrically
symmetric force field, Fopt ¼ Fopt

ϕ eϕ þ Fopt
r er , with all forces

vanishing on the beam axis (see (Supplementary Note 2)). For

small displacements from the axis, the gradient force, Fopt
r , is

restoring, attracting the particle toward the center of the beam.
The azimuthal component, Fϕ, makes the trap non-conservative
(i.e., ∇ × Fopt ≠ 0), forcing it out of equilibrium and allowing
the particle to accumulate angular momentum. Notably, the
ratio of the radial gradient force to the azimuthal spin force
is approximately constant over the width of the beam, i.e.,
Fopt
ϕ =Fopt

r � const, because they have a similar dependence on
intensity gradients (see Supplementary Note 2). A detailed
theoretical analysis of the momentum flows and optical forces
acting on small and Mie particles is provided in Supplementary
Note 1 and Supplementary Note 2.

The motion of the probe particle is determined by the delicate
interplay between thermal fluctuations, spin and gradient optical
forces and is governed by a Langevin equation, in Cartesian
coordinates:

FoptðrÞ þ FLðtÞ � ξ _r ¼ m r
::
; ð2Þ

where m is the mass of the particle and ξ the pressure dependent
Stokes' drag. Fopt≡ Pfopt is the external optical force at
power P and Fopt is the fluctuating Langevin force, which is
uncorrelated in time with zero mean and variance given by the
fluctuation–dissipation theorem, e.g., hFL

i ðtÞi ¼ 0, hFL
i ðtÞ �

FL
j ðt′Þi ¼ 2kBTξδijδðt � t′Þ for Cartesian components i, j= x, y,

z. For CP beams, we observe two distinct regimes (see depiction
in Fig. 1c, d), dependent on optical power. These can be
contrasted with the conspicuously different behavior observed
in LP traps, which is qualitatively similar for all trap powers. At
low optical powers (regime I) the particle undergoes non-
equilibrium Brownian motion, deviating substantially from the
equipartition of energy. At higher powers (regime II) we observe
the formation of stable orbits, which are thermally excited and
driven by optical spin.

Regime I: driven Brownian motion. In the low power regime I
(turquoise curves, Fig. 1d), the particle remains within the linear
range of the trap and, in Cartesian coordinates, the optical force
can be approximated as,

Fopt
x

Fopt
y

" #
¼ � Kr Kϕ

�Kϕ Kr

" #
x

y

� �
: ð3Þ

Kr is the radial stiffness associated with the gradient force. It
is isotropic and gives a force in the radial direction, toward
the origin. Kϕ is the stiffness of the azimuthal force. Both
stiffness coefficients are proportional to power, e.g., Kr= Pkr and
Kϕ= Pkϕ.

The resulting linear system has a set of characteristic
frequencies {ωc}, which relate to qualitative features of the
stochastic dynamics. In the case of weak damping, ξ2 	 4mKr
(see Supplementary Note 3)

ωc � ±ω0 þ
i
2m

ξ ±
Kϕ

ω0

� �
: ð4Þ

The real parts of ωc describe typical oscillation frequencies and,
for all polarization states, they are approximately equivalent to
the resonant trap frequency, ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pkr=m

p
. The imaginary

parts of ωc, ℑ(ωc), represent damping or loss coefficients,
associated with exponential decay. For linearly polarized beams,
the azimuthal force is zero, kϕ= 0 so that ℑ(ωc)= ξ/2m is
positive and independent of power. In contrast, when kϕ ≠ 0, the
imaginary parts of two of the characteristic frequencies approach
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zero as the optical power approaches a critical value, Pthr:

Pthr
ξ2

¼ kr
mk2ϕ

: ð5Þ

At P= Pthr, the corresponding threshold frequency Ωthr≡
ω0(Pthr) satisfies,

Ωthr

ξ
¼ kr

mkϕ
: ð6Þ

As demonstrated below, these conditions (Eqs. 5 and 6)
describe the boundary between regimes I and II, and are achieved
when average centripetal forces acquired by the Brownian particle
are just sufficient to balance attractive, gradient forces.

In regime I, where the power is below threshold (P < Pthr), the
stochastic motion of the probe particle can be characterized in
terms of the power spectral density (PSD) and the time
correlations of the particle coordinates. The former quantifies
the energy in the particle motion as a function of frequency. The
latter relates to underlying deterministic motion. For instance,
〈x(t)y(t+ τ)〉 measures the correlation between the x coordinate
at time t with the y coordinate at a later time (t+ τ). For τ= 0,
we get the instantaneous variances of the coordinates. Both the
PSD and the time correlations can be expressed in terms of ωc

(see Supplementary Note 3) and both depend qualitatively on the
presence of spin forces (i.e., on whether or not kϕ= 0). Table 1
summarizes the results.

In both cases, the PSD of the system is dominated by a single
peak, approximately at the resonant frequency, ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pkr=m

p
(see Supplementary Note 3). For conservative, linearly polarized
beams, the peak height decreases with increasing optical power
(∝1/P) and has a constant width associated with the drag term.

For very low optical power, the circularly polarized trap
behaves similarly. However, as the power increases and
approaches the threshold, Pthr, a qualitative difference emerges
and the peak grows in height, ∝1/(Pthr− P)2, whereas decreasing
in width in proportion to =ðωcÞ � ξ

2m
ðPthr�PÞ
2Pthr

. Physically, the white
thermal noise excites a resonance in which frictional losses are
increasingly compensated by the non-conservative spin forces
and the behavior becomes increasingly coherent and determinis-
tic. In this respect the behavior of the trap is analogous to that of
a laser approaching the lasing threshold. These theoretical
predictions are supported by the experimental results in Fig. 2.

Time correlations (Supplementary Note 3) measure the rate
at which the motion loses coherence owing to thermal
fluctuations. In general, 〈x(t+ τ)x(t)〉 and 〈y(t+ τ)x(t)〉 are

damped oscillations. As P → Pthr, see Table 1, the amplitude of
〈x(t+ τ)x(t)〉 increases as 1/(Pthr− P), and decays increasingly
slowly with time. Meanwhile, 〈x(t+ τ)y(t)〉 has the same
amplitude, but is phase shifted by π/2, indicating a growing
tendency toward rotation of the center of mass about the beam
axis. Experimental results strongly support this idea, see Fig. 2c,
d. Once more, they clearly demonstrate an increase of motional
coherence for circularly polarized beams for powers approach-
ing the threshold power.

For zero time (τ= 0), the instantaneous variances of the
particle coordinates, e.g., 〈x2〉, quantify the departure from
thermodynamic equilibrium. In a conservative, harmonic trap
(i.e., linearly polarized beams) equipartition is satisfied and
the elastic and thermal energies can be equated, e.g.,
1
2 Pkhx2i ¼ 1

2 kBT , so that the product, P〈x2〉 is constant. In
contrast, the circularly polarized trap deviates increasingly from
equipartition as Pthr is approached, so that 〈x2〉 ∝ 1/(Pthr− P)
increases rapidly, as confirmed experimentally in Fig. 2e.
Figure 2f illustrates this phenomenon visually: the two-
dimensional probability density distribution of the trapped
particle in the transversal plane, scaled by the square root of
the beam power, is invariant for a conservative trap but grows
with increasing power in the presence of non-conservative forces.

In combination, the PSD, time correlations, and variances
reveal the underlying physical behavior. Optical forces vanish on
the beam axis and are locally restoring so that points on the beam
axis are mechanical equilibria. Nevertheless, thermal fluctuations
repeatedly push the particle off-axis, exposing it to the small,
azimuthal spin forces. These increase the tendency for the particle
to orbit about the beam axis, as expressed by the time
correlations, 〈x(t+ τ)y(t)〉 and 〈x(t+ τ)x(t)〉. Centripetal forces
grow and act against the gradient forces, effectively canceling
them as P → Pthr. Under these conditions, the stochastic motion
becomes increasingly coherent in terms of rotation: kinetic energy
is increasingly concentrated at a single, resonant frequency as
indicated in the PSD (Fig. 2b). Conversely, the radial motion is
increasingly incoherent, and the particle is free to explore the trap
(i.e., 〈x2〉 →∞). Crucially, these non-equilibrium effects are absent
for linearly polarized beams and only appear when for circular
polarization. This further demonstrates that our trap is free from
circulating flows of momentum, caused by beam misalignment,
that would push even LP beams out of equilibrium28.

As the power is increased above Pthr, centripetal forces tend to
exceed gradient forces, and the particle is pushed outward. If the
force field were truly linear, this process would continue
indefinitely. In reality, the trap is finite. Stable orbits with well
defined radii, ro, and frequency, Ω, can form as the particle
encounters non-linear regions of the trap, taking us into the high
power regime II (purple curves, Fig. 1d).

Table 1 Comparison summary for stochastic motion in CP and LP beams in regime I

Quantity Linear polarization (LP)
Kϕ= 0

Circular polarization (CP)
Kϕ≠ 0

ωc � ±ω0 þ iξ
2m � ±ω0 þ iξ

2m 1±
ffiffiffiffiffi
P
Pthr

q	 

PSD peak height

〈X(ω)X*(ω)〉max

Decreases with power

¼ 2kBT
ξω2

0
/ 1

P

Increases with P→ Pthr

� 2kBT
m2

ðξ2ω2
0þK2

ϕÞP2thr
ξω2

0ðP�PthrÞ2
/ 1

ðP�PthrÞ2

PSD peak width at half maximum Power independent � ξ
2m Decreases towards zero with increasing power � ξ

2m 1±
ffiffiffiffiffi
P
Pthr

q	 

Time correlations

〈x(t)x(t+ τ)〉

〈x(t+ τ)y(t)〉

Decay power independent

� kBT
Kr
cosðω0τÞe�ξτ=2m

≈0

Decay decreases with P→ Pthr

� cosðω0τÞ
P�Pthr

eξðP�PthrÞτ=4mPthr

� ± sinðω0τÞ
P�Pthr

eξðP�PthrÞτ=4mPthr

Characteristic frequencies, ωc, PSD characteristics and time correlations describing under-damped stochastic motion in circularly and linearly polarized beams
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Regime II: stable orbits. Simple equilibrium conditions for the
orbits can be obtained by balancing azimuthal spin forces with
viscous drag, and radial centripetal forces with optical gradient
forces:

Po
ξ2

¼ � ro
m

frðroÞ
f 2ϕ ðroÞ

; ð7aÞ

Ωo

ξ
¼ frðroÞ

mfϕðroÞ
; ð7bÞ

where Po is the optical power required to sustain an orbit with
radius ro for a given viscous drag, ξ. Taking the linear

approximation for small orbits (e.g., fi(r) ≈ kir, with i= r, ϕ) in
Eqs. (7, a, b), reproduces the threshold conditions between
regimes I and II, Eqs. (5 and 6): the optical power required to
zero the imaginary parts of the characteristic frequencies, i.e.,
ℑ(ωc(P))= 0, is precisely the power required for centripetal
forces to balance gradient forces in the linear approximation.
Because the ratio of the azimuthal and radial forces is approxi-
mately constant the orbit frequency, Ωo, is also approximately
constant and independent of orbit radius and optical power, i.e.,
Ωo ≈Ωthr.

In order for an orbit to be stable and coherent, further
conditions must be met. Any change in the orbit radius or
frequency should be counteracted by the trap. For instance, a
perturbation in the radius will cause a change in the gradient,
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Fig. 2 Characteristics of the stochastic motion in Regime I. Power spectral densities for particle positions for a LP b CP beams. In the latter case, spin
momentum drives a resonance, increasing the peak height and narrowing its width. c, d Time-dependent variance of particle coordinates at two different
beam powers. 〈x(t+ τ)x(t)〉 and 〈x(t+ τ)y(t)〉 are π/2 phase shifted, indicating a tendency toward circular motion. Increasing the power increases the
mean frequency of rotation and increases the time constant governing the loss of coherence of the oscillation. Results for linearly polarized beams are
inset. e Graph showing the product of the position variance with power, as a function of power (P〈x2〉 v P), for LP and CP. Error bars show the standard
error of the mean. f Measured probability distribution of the trapped particle in the transverse plane, scaled by the square root of the beam power for a
linearly polarized trap (top row) and a circularly polarized trap (lower row). Variation of this distribution with beam power indicates deviation from
thermodynamic equilibrium
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azimuthal and centripetal forces that should act to restore
the orbit radius. Furthermore, these responses need to be
strong enough to constrain thermal fluctuations. The linear
stability of the orbits, and their resistance to thermal fluctuations
are analyzed in Supplementary Note 4. In summary, we find
that for a beam with waist radius W0, there are no asymptoti-
cally stable orbits with ro≳rmax �

ffiffiffiffiffiffiffiffi
2=3

p
W0, which corresponds

to a maximum optical power given by Eq. (7a). Furthermore,
thermal fluctuations tend to dominate orbits with small
radii and a higher optical power (Porb > Pthr) is required
for formation of thermally stable, coherent orbits (Supplementary
Note 4).

This overall behavior is confirmed experimentally. Figure 1c
illustrates the qualitative difference in the transverse motion of
the particle between regimes I and II. This is quantified in Fig. 3a,
which shows the mean values of the radius of the orbit as a
function of optical power. Insets show that the orbit is slightly
elliptical and its size suffers hysteresis with respect to the
direction of power change. In particular, orbiting appears to
survive to lower powers when the power is being decreased. These
effects are related to the difference between Pthr, the power
required to destabilize the trap in the linear regime, and Porb >
Pthr, the power required to form a stable, coherent orbit. At the
lowest powers, the mean radii of the particle trajectories are
indeed comparable for CP and LP beams. However, they begin to
diverge with increasing power; the LP radii decrease and CP
increase, in accordance with theory. We note that the non-
orbiting trajectories for the linearly polarized beams (black
crosses in Fig. 3a) were captured between the orbiting trajectories
shown by the blue and green circles, demonstrating the
robustness of the orbiting behavior. At higher optical powers
than those represented in the graph, centripetal forces exceed
gradient forces and the particle is radially ejected from circularly
polarized traps.

Mean values for x and y trap frequencies (ω0/2π) in LP traps
are shown in Fig. 3b and, together with the CP results, they follow
the predicted behavior. In regime I, CP and LP traps follow the
same power dependence, however in regime II the orbiting
frequency remains constant, the exact value depending slightly on
the branch of the hysteresis curve. This reflects the observation
that the ratio of the radial and azimuthal forces is approximately
constant, yielding a constant orbit frequency in Eq. (7b).

Finally, Fig. 3c shows the measured azimuthal force as a
function of radius. These data are evaluated by fitting to
experimentally measured trajectories as described in the Methods
section, below, and in Supplementary Note 5. In particular, the
curve was evaluated by fitting experimental PSDs to theoretical
profiles (Supplementary Note 3) for regime I, and by applying
the orbiting equation, Eq. (7b), in regime II. The validity of
the theoretical description is further demonstrated by the close
overlap of the data points in the transitional region between axial
motion and fully developed orbiting. For comparison, the
continuous black line in Fig. 3c shows the theoretical optical
force, calculated from Mie theory (Supplementary Note 2). This
agreement requires the theoretical optical power to be scaled
by a factor of ≈2, which includes various uncertainties in the
experimental system (Supplementary Note 4 and Supplementary
Note 5). The scaling factor cancels in the theoretical evaluation
of Ωthr, through Eq. (6), which provides a direct relationship
between experiment and theory.

Discussion
Our experiments vividly demonstrate the mechanical effects of
optical spin momentum. Spin forces bias Brownian motion,
induce orbits, and ultimately throw a probe particle from an
optical trap. These results are completely generic: for a given
particle and circularly polarized beam, at a given air pressure,
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there is always an escape power above which the trap will eject
the particle. For fixed optical power, there is also an equivalent
pressure beneath which the same thing will happen. The para-
metric variation of these phenomena is theoretically investigated
in Supplementary Note 3. As anticipated, the relative magnitude
of the spin force falls off very rapidly for small spheres, vanishing
in the small particle limit. As a result the threshold power, Pthr,
increases sharply, as does the threshold orbit frequency, Ωthr.
Increasing the beam waist gradually increases Pthr, but preserves
the ratio between spin and gradient forces, leaving Ωthr

approximately unchanged. These results show an intriguing
possibility. For small spheres, and tightly focused beams, it
should be possible to excite very high-frequency orbits with
Ωthr ≈ 106 Hz under experimentally accessible conditions. At a
pressure of ~ 4 mbar we would expect Ωthr ≈ 106 Hz for a sphere
of radius a ≈ 0.2 μm in a diffraction limited beam. Decreasing the
pressure further, accentuates the effect considerably.

In addition, this work provides an archetypal example of lin-
early non-conservative optical vacuum traps. All of the phe-
nomena observed here arise from intrinsic, non-symmetric
coupling between motional degrees of freedom. This is expressed
in the asymmetry of the stiffness matrix, Eq. (3). For circularly
polarized light, this coupling is caused by spin. More generally,
asymmetric coupling can be induced by any reduction in sym-
metry, either of the particle shape, or the trapping field29. In
viscous media, this results in biased Brownian motion30. As we
have seen, the consequences in air or weak vacuum are more
extreme, as the trapped particle can accumulate momentum,
resulting in thermally excited coherent motion. Analogous effects
may be expected for non-spherical particles or defective beams.

Finally, these experiments signpost a new research direction.
Optical force fields are generally non-conservative, and their
structure is derived from internal momentum flows. It is clear
that measuring the trajectories of probe particles in vacuum can
help us develop our understanding of optical momentum flows in
structured light fields as well as the dynamics and thermo-
dynamics associated with motion in potentially complex force
fields. Some of these possibilities have previously been described
by Berry and Shukla31,32. Nevertheless, major unanswered ques-
tions persist, especially concerning the details of momentum
coupling to matter of varying shape and composition, and to the
interplay between thermal fluctuations and some of the dyna-
mical behavior predicted elsewhere.

Methods
Experimental set-up. A schematic of the experimental set-up is provided in Fig. 4.
The low noise laser beam from a Prometheus laser (Coherent) working at a
wavelength of 1064 nm passes, first, through a polarizing beamsplitter PBS1 and
then is coupled to a single mode optical fiber (SMOF) for spatial filtering. The
trapping power is controlled by rotation of the half-wave plate, PP1, in front of
PBS1. The output of the SMOF is divided into two beams of equal power and
orthogonal LP by polarizing beamsplitter PBS2. Lenses L3 and L4 constitute a 1/1
beam expander. Before entering the vacuum chamber, the polarization of one of
the beams could be changed from linear to right-hand or left-hand circular (CP) by
a quarter-wave plate PP4. The linear polarization of the second beam can be first
rotated through an arbitrary angle by half-wave plate, PP2, and subsequently
changed from linear to right-hand or left-hand circular polarization by the quarter-
wave plate, PP3. In the vacuum chamber, the counter-propagating beams were
focused by aspheric lenses L1, L2 (Thorlabs C240TME-C) of focal length 8 mm to
create a trap with a beam waist of W0 ≈ 2.7 μm. Non-porous SiO2 microspheres
(Bangs Laboratories, diameter 1.54 μm, size CV 10–15%) with negligible absorption
were sprayed with a nebulizer (Breuer IH50) into the volume of the optical trap at
atmospheric pressure. Prior to spraying, the spheres were suspended in isopropyl
alcohol with low particle concentration and the suspension was sonicated in an
ultrasonic bath for 15 min to prevent clumping. All subsequent experiments were
performed at 4 mbar. The pressure in the trap was measured with 30% accuracy
with a Pirani and cold cathode gauge (Pfeiffer PKR 251). For CP measurements,
the two counter-propagating beams were circularly polarized with opposite
handedness, so that the transverse electric fields of the beams rotate together
(Fig. 1a). Using the quarter-wave plates we made comparative measurements with
parallel or perpendicularly linearly polarized beams. The same particle was used for
all the presented experiments that were performed with optical trapping power
varying in the range 45–281 mW.

Particle tracking. Motion of the trapped particle was tracked using a quadrant
photodetector (InGaAs QPD Hamamatsu G6849). We employed a detection
scheme similar to back focal plane interferometry, where the scattered trapping
light interferes with the unscattered trapping beam and creates a rotationally non-
symmetrical intensity distribution in the plane of QPD33. In our case, the trapping
beam, propagating from left to right, was used as for the particle tracking at the
QPD. While trapping in CP light, after passing through the vacuum chamber the
measuring beam is reflected upwards out of the plane of the set-up by the polar-
izing beamsplitter PBS3. On the other hand, while trapping in LP light, the mea-
suring beam would have been transmitted by PBS3 so PP3 was rotated by 2° from
its ideal orientation in order to get a signal on QPD. This allowed us to monitor the
motion of the trapped sphere in axial (z) and orthogonal horizontal (x) and vertical
(y) directions. The QPD signal was processed by home-made electronics and
acquired by NI USB 6351 card at 250 kHz sampling rate. The particle’s motion was
also tracked from outside the vacuum chamber by a fast CMOS camera (Vision
Research Phantom V611) which was triggered to begin recording at the same time
as the QPD. The microscope was composed of a microscope objective (MOTIC,
Plan Apo, 100×/0.55, WD 13), tube lens (Thorlabs ACA-254-500A), and a fast
CMOS camera (Vision Research Phantom V611). For the purpose of observation,
the particle was illuminated by a broad, weak laser beam of wavelength 532 nm, as
the camera is more sensitive at this spectral range. The framerate was 200,000 fps
for measurements in LP beams, when the particle remains close to the beam axis,
and 187,290 fps for measurements of orbiting. The position of the particle in each
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Fig. 4 Schematic showing the optical set-up. A detailed description is provided in the Methods section
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frame was obtained with sub-pixel precision by fitting a two-dimensional Gaussian
profile to the image34. The microscope was calibrated using a calibration grid so the
camera recording eventually provided calibrated x and z coordinates of the particle
trajectory (nm). Finally, the calibration constant relating the QPD signal to dis-
placement in meters was obtained for each power separately by comparing widths
of histograms of position obtained by camera (nm) and by QPD (V). This com-
parison was possible because the camera and QPD recordings were triggered to
start simultaneously. As the CMOS camera detects x and z axis, we used the same
calibration constant for x and y axes of QPD.

Data processing. Theoretical profiles were fitted to experimentally measured PSDs
for LP beams, allowing us to determine the ratio of the drag to the mass of the
particle, ξ/m. This was used as a fixed parameter for the system in analysis of
particle motion in CP beams. Resonant trap frequencies, ω0 or orbiting frequencies
Ωo, were determined from fits to theoretical power spectra and the spin force
contribution was obtained from fits to theoretical power spectra in regime I or
using Eq. (8) for regime II. Further details are provided in Supplementary Note 5.

Data availability
The data presented in this article are available from the corresponding author on
request.
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