Publications
Export 211 results:
Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review. Sensors, 14, 17725-17752 (2014).
. Candida parapsilosis Biofilm Identification by Raman Spectroscopy. Int. J. Mol. Sci., 15, 23924-23935 (2014).
. Optical sorting of nonspherical and living microobjects in moving interference structures. Opt. Express, 22, 29746-29760 (2014).
. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles. Opt. Express, 22, 16207-16221 (2014).
. Dynamical analysis of an optical rocking ratchet: Theory and experiment. Phys. Rev. E, 87, 062910:1-9 (2013).
. Experimental demonstration of optical transport, sorting and self-arrangement using a `tractor beam'. Nature Photon., 7, 123-127 (2013).
. Following the mechanisms of bacteriostatic versus bacericidal action using Raman spectroscopy. Molecules, 18, 13188-13199 (2013).
. Holographic Raman tweezers controlled by hand gestures and voice commands. Optics and Photonics Journal, 3, 331-336 (2013).
. Metallic nanoparticles in a standing wave: optical force and heating. J. Quant. Spectrosc. Radiat. Transf., 126, 84-90 (2013).
. Optical forces in a non-diffracting vortex beam. J. Quant. Spectrosc. Radiat. Transf., 126, 78-83 (2013).
. Optical manipulation of aerosol droplets using a holographic dual and single beam trap. Opt. Lett., 38, 4601-4604 (2013).
. Optical trapping of microalgae at 735–1064 nm: Photodamage assessment. J. Photochem. Photobiol. B, 121, 27 - 31 (2013).
. Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching. Opt. Express, 21, 21380-21394 (2013).
. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology. Spectrochim. Acta B, 74-75, 169-176 (2012).
. Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. J. Opt. Soc. Am. A, 29, 1224–1236 (2012).
. Optical forces induced behavior of a particle in a non-diffracting vortex beam. Opt. Express, 20, 24304-24319 (2012).
. Raman microspectroscopy of algal lipid bodies: beta-carotene quantification. J. Appl. Phycol., 24, 541-546 (2012).
. Speed enhancement of multi-particle chain in a traveling standing wave. Appl. Phys. Lett., 100, 051103 (2012).
. Characterization of oil-producing microalgae using Raman spectroscopy. Laser Phys. Lett., 8, 701–709 (2011).
. Dynamic size tuning of multidimensional optically bound matter. Appl. Phys. Lett., 99, 101105 (2011).
. The holographic optical micro-manipulation system based on counter-propagating beams. Laser Phys. Lett., 8, 50–56 (2011).
. Parametric study of optical forces acting upon nanoparticles in a single, or a standing, evanescent wave. J. Opt., 13, 044016:1–9 (2011).
. Static and dynamic behavior of two optically bound microparticles in a standing wave. Opt. Express, 19, 19613–19626 (2011).
. Diffusive Mixing of Polymers Investigated by Raman Microspectroscopy and Microrheology. Langmuir, 26, 14223-14230 (2010).
. Experimental and theoretical determination of optical binding forces. Opt. Express, 18, 25389–25402 (2010).
. . Particle jumps between optical traps in a one-dimensional optical lattice. New. J. Phys., 12, 083001:1–20 (2010).
. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett., 7, 378–383 (2010).
. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo. Sensors, 10, 8635–8651 (2010).
. Detecting Sequential Bond Formation Using Three-Dimensional Thermal Fluctuation Analysis. Chem. Phys. Chem., 10, 1541-1547 (2009).
. Direct Measurement of the Nonconservative Force Field Generated by Optical Tweezers. Phys. Rev. Lett., 103, 108101 (2009).
. Extreme axial optical force in a standing wave achieved by optimized object shape. Opt. Express, 17, 10472–10488 (2009).
. Longitudinal optical binding of several spherical particles studied by the coupled dipole method. J. Opt. A: Pure Appl. Opt., 11, 034009 (2009).
. .
Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electophoresis, 29, 4813–4851 (2008).
. . . Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination. New. J. Phys., 10, 113010 (2008).
. Analytical description of longitudinal optical binding of two spherical nanoparticles. J. Opt. A: Pure Appl. Opt., 9, S215–S220 (2007).
. Axial optical trap stiffness influenced by retro-reflected beam. J. Opt. A: Pure Appl. Opt., 9, S251–S255 (2007).
. Cellular and colloidal separation using optical forces. Methods in Cell Biology, 82, 467–495 (2007).
. Optical forces acting on a nanoparticle placed into an interference evanescent field. Opt. Commun., 275, 409–420 (2007).
. Optical tracking of spherical micro-objects in spatially periodic interference fields. Opt. Express, 15, 2262–2272 (2007).
. Opto-fluidic micromanipulation system based on integrated polymer waveguides. J. Optoel Adv. Mater., 9, 2148-2151 (2007).
. . .
Formation of long and thin polymer fiber using nondiffracting beam. Opt. Express, 14, 8506-8515 (2006).
. Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery. Appl. Phys. B, 84, 157–165 (2006).
. . Optical sorting and detection of sub-micron objects in a motional standing wave. Phys. Rev. B, 74, 035105:1-6 (2006).
.