Publications
Export 40 results:
Filters: Author is Šiler, M [Clear All Filters]
Analysis of bacteriophage-host interaction by Raman tweezers. Analytical Chemistry, 92, 12304–12311 (2020202020202020).
Tunable Soft-Matter Optofluidic Waveguides Assembled by Light. ACS Phot., 6, 403-410 (2019201920192019).
Detection of chloroalkanes by surface-enhanced raman spectroscopy in microfluidic chips. Sensors, 18, 3212 (2018201820182018).
Diffusing up the Hill: Dynamics and Equipartition in Highly Unstable Systems. Phys. Rev. Lett., 121, 23601 (2018201820182018).
Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nature Photon., 12, 33–39 (2018201820182018).
Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap. Nature Commun., 9, 5453 (2018201820182018).
Differentiation between Staphylococcus aureus and Staphylococcus epidermidis strains using Raman spectroscopy. Future Microbiology, 12, 10 (2017201720172017).
Dynamics of an optically bound structure made of particles of unequal sizes. Opt. Lett., 42, 1436-1439 (2017201720172017).
Morphological and Production Changes in Planktonic and Biofilm Cells Monitored Using SEM and Raman Spectroscopy. Microscopy and Microanalysis, 23, S1 (2017201720172017).
Rapid identification of staphylococci by Raman spectroscopy. Sci. Rep., 7, 14846 (2017201720172017).
Thermally induced micro-motion by inflection in optical potential. Sci. Rep., 7, 1697 (2017201720172017).
Direct measurement of the temperature profile close to an optically trapped absorbing particle. Opt. Lett., 41, 870-873 (2016201620162016).
Noise-to-signal transition of a Brownian particle in the cubic potential: II. optical trapping geometry. Journal of Optics, 18, 065402 (2016201620162016).
Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16. Sensors, 16, 1808 (2016201620162016).
Aberration resistant axial localization using a self-imaging of vortices. Opt. Express, 23, 15316–15331 (2015201520152015).
Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap. Opt. Express, 23, 7273-7287 (2015201520152015).
Cryo-SEM and Raman Spectroscopy Study of the Involvement of Polyhydroxyalkanoates in Stress Response of Bacteria. Microscopy and Microanalysis, 21, 183-184 (2015201520152015).
Identification of individual biofilm-forming bacterial cells using Raman tweezers. J. Biomed. Opt., 20, (2015201520152015).
Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. Sensors, 15, 29635-29647 (2015201520152015).
Non-spherical gold nanoparticles trapped in optical tweezers: shape matters. Opt. Express, 23, 8179-8189 (2015201520152015).
Optical trapping in secondary maxima of focused laser beam. J. Quant. Spectrosc. Radiat. Transf., 162, 114 - 121 (2015201520152015).
Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers. Sci. Rep., 5, 8106 (2015201520152015).
Candida parapsilosis Biofilm Identification by Raman Spectroscopy. Int. J. Mol. Sci., 15, 23924-23935 (2014201420142014).
Optical sorting of nonspherical and living microobjects in moving interference structures. Opt. Express, 22, 29746-29760 (2014201420142014).
Experimental demonstration of optical transport, sorting and self-arrangement using a `tractor beam'. Nature Photon., 7, 123-127 (2013201320132013).
Following the mechanisms of bacteriostatic versus bacericidal action using Raman spectroscopy. Molecules, 18, 13188-13199 (2013201320132013).
Metallic nanoparticles in a standing wave: optical force and heating. J. Quant. Spectrosc. Radiat. Transf., 126, 84-90 (2013201320132013).
Optical forces in a non-diffracting vortex beam. J. Quant. Spectrosc. Radiat. Transf., 126, 78-83 (2013201320132013).
Optical manipulation of aerosol droplets using a holographic dual and single beam trap. Opt. Lett., 38, 4601-4604 (2013201320132013).
Optical forces induced behavior of a particle in a non-diffracting vortex beam. Opt. Express, 20, 24304-24319 (2012201220122012).
Speed enhancement of multi-particle chain in a traveling standing wave. Appl. Phys. Lett., 100, 051103 (2012201220122012).
Parametric study of optical forces acting upon nanoparticles in a single, or a standing, evanescent wave. J. Opt., 13, 044016:1–9 (2011201120112011).
Static and dynamic behavior of two optically bound microparticles in a standing wave. Opt. Express, 19, 19613–19626 (2011201120112011).
Experimental and theoretical determination of optical binding forces. Opt. Express, 18, 25389–25402 (2010201020102010).
Particle jumps between optical traps in a one-dimensional optical lattice. New. J. Phys., 12, 083001:1–20 (2010201020102010).
Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination. New. J. Phys., 10, 113010 (2008200820082008).
Optical forces acting on a nanoparticle placed into an interference evanescent field. Opt. Commun., 275, 409–420 (2007200720072007).
Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery. Appl. Phys. B, 84, 157–165 (2006200620062006).
An optical nanotrap array movable over a milimetre range. Appl. Phys. B, 84, 197–203 (2006200620062006).
Optical sorting and detection of sub-micron objects in a motional standing wave. Phys. Rev. B, 74, 035105:1-6 (2006200620062006).